Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
Add more filters










Publication year range
1.
BMC Chem ; 18(1): 47, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448974

ABSTRACT

In the current study, Azo-Thiohydantoins derivatives were synthesized and characterized by using various spectroscopic techniques including FTIR, 1H-NMR, 13C-NMR, elemental and HRMS analysis. The compounds were evaluated for alkaline phosphatase activity and it was observed that among all the synthesized compounds, derivative 7e exhibited substantial inhibitory activity (IC50 = 0.308 ± 0.065 µM), surpassing the standard inhibitor (L-Phenyl alanine, IC50 = 80.2 ± 1.1 µM). Along with this, these derivatives were comprehensively examined regarding the electronic properties and reactivity of the synthesized compounds using Density Functional Theory (DFT) calculations, where the results were found very promising and the synthesized compound were found stable. After that, SwissADME evaluations highlighted compounds for their favorable physicochemical properties, including solubility and drug-likeness. Molecular docking exhibited the strong binding affinities of 7f and 7e derivatives with intestinal alkaline phosphatase (IAP), further supported by Molecular Dynamics (MD) simulations. This comprehensive integration of experimental and computational approaches sheds the light on the potential therapeutic applications of the synthesized compounds. By providing a detailed investigation of these aspects, this research opens the avenues for the development of novel pharmacologically active compounds with diverse applications.

2.
Int J Biol Macromol ; 263(Pt 1): 130231, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38368975

ABSTRACT

Three newly synthesized amantadine thiourea conjugates namely MS-1 N-(((3 s,5 s,7 s)-adamantan-1-yl)carbamothioyl)benzamide, MS-2 N-(((3 s,5 s,7 s)-adamantan-1-yl)carbamothioyl)-4-methylbenzamide and MS-3 N-((3 s,5 s,7 s)-adamantan-1-ylcarbamothioyl)-4-chlorobenzamide were investigated for their structures, bindings (DNA/ elastase), and for their impact on healthy and cancerous cells. Theoretical (DFT/docking) and experimental {UV-visible (UV-), fluorescence (Flu-), and cyclic voltammetry (CV)} studies indicated binding interactions of each conjugate with DNA and elastase enzyme. Theoretically and experimentally calculated binding parameters for conjugate - DNA interaction revealed MS-3 - DNA to have most significant binding with comparatively greater values of binding parameters {(Kb/M-1: docking, 3.8 × 105; UV-, 5.95 × 103; Flu-,1.55 × 105; CV, 1.52 × 104), (∆G/ kJmol-1: docking, -32.09; UV-, -22.40; Flu-,-30.81; CV, -24.82)}. The docked structures, greater bindings site size values (n), and the trend in DNA viscosity changes in the presence of each conjugate concentration confirmed a mixed binding mode of interaction among them. Conjugate - elastase binding by docking agreed with the experimental anti-elastase findings. Cytotoxicity studies of each tested conjugate demonstrated greater cytotoxicity for cancerous (MG-U87) cells in comparison to control, while for the normal (HEK-293) cells the cytotoxicity was found comparatively low. Overall exploration suggested that MS-3 is the most effective candidate for DNA binding, anti-elastase, and for anti-glioma activities.


Subject(s)
Amantadine , Thiourea , Humans , Thiourea/pharmacology , Thiourea/chemistry , HEK293 Cells , Molecular Docking Simulation , Amantadine/pharmacology , DNA/chemistry , Pancreatic Elastase
3.
Protein J ; 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37940790

ABSTRACT

AKR1B1 and AKR1B10 are important members of aldo-keto reductase family which plays a significant role in cancer progression by modulating cellular metabolism. These enzymes are involved in various metabolic processes, including the synthesis and metabolism of hormones, detoxification of reactive aldehydes, and the reduction of various endogenous and exogenous compounds. This study aimed to explore the potential of strychnine as an anticancer agent by targeting AKR1B1 and AKR1B10 via drug repurposing approach. To assess the drug-like properties of strychnine, a physiologically based pharmacokinetic (PKPB) model and High Throughput Pharmacokinetics (HTPK) approach were employed. The obtained results fell within the expected range for drug molecules, confirming its suitability for further investigation. Additionally, density functional theory (DFT) studies were conducted to gain insight into the electronic properties contributing to the drug molecule's reactivity. Building upon the promising DFT results, molecular docking analysis using the AutoDock tool was performed to examine the binding interactions between strychnine and the proposed targets, AKR1B1 and AKR1B10. Findings from the molecular docking studies suggested a higher probability of strychnine acting as an inhibitor of AKR1B1 and AKR1B10 with docking scores of - 30.84 and - 29.36 kJ/mol respectively. To validate the stability of the protein-ligand complex, Molecular Dynamic Simulation (MDS) studies were conducted, revealing the formation of a stable complex between the enzymes and strychnine. This comprehensive approach sheds light on the potential effectiveness of strychnine as a treatment for breast, lung, liver, and pancreatic cancers, as well as related malignancies. The novel insights gained from the physiologically based pharmacokinetic modeling, density functional theory, molecular docking, and molecular dynamics simulations collectively support the prospect of strychnine as a promising molecule for anticancer therapy. Further investigations are warranted to validate these findings and explore the therapeutic potential of strychnine in preclinical and clinical settings.

4.
RSC Adv ; 13(48): 33826-33843, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38020022

ABSTRACT

In the current study, a novel compound, bis(3-(2H-benzo[d][1,2,3]triazol-2-yl)-2-(prop-2-yn-1-yloxy)-5-(2,4,4-trimethylpentan-2-yl)phenyl)methane (TAJ1), has been synthesized by the reaction of 6,6'-methylenebis(2-(2H-benzo[d][1,2,3]triazol-2-yl)-4-(2,4,4-trimethylpentan-2-yl)phenol) (1), propargyl bromide (2) and potassium carbonate. Spectroscopic (FTIR, 1H-NMR, 13C-NMR) and single-crystal assays proved the structure of the synthesized sample. XRD analysis confirmed the structure of the synthesized compound, showing that it possesses two aromatic parts linked via a -CH2 carbon with a bond angle of 108.40°. The cell line activity reported a percent growth reduction for different cell types (HeLa cells, MCF-7 cells, and Vero cells) under various treatment conditions (TAJ1, cisplatin, and doxorubicin) after 24 hours and 48 hours. The percent growth reduction represents a decrease in cell growth compared to a control condition. Furthermore, density functional theory (DFT) calculations were utilized to examine the frontier molecular orbitals (FMOs) and overall chemical reactivity descriptors of TAJ1. The molecule's chemical reactivity and stability were assessed by determining the HOMO-LUMO energy gap. TAJ1 displayed a HOMO energy level of -0.224 eV, a LUMO energy level of -0.065 eV, and a HOMO-LUMO gap of 0.159 eV. Additionally, molecular docking analysis was performed to assess the binding affinities of TAJ1 with various proteins. The compound TAJ1 showed potent interactions with NEK2, exhibiting -10.5 kcal mol-1 binding energy. Although TAJ1 has demonstrated interactions with NEK7, NEK9, TP53, NF-KAPPA-B, and caspase-3 proteins, suggesting its potential as a therapeutic agent, it is important to evaluate the conformational stability of the protein-ligand complex. Hence, molecular dynamics simulations were conducted to assess this stability. To analyze the complex, root mean square deviation (RMSD) and root mean square fluctuation analyses were performed. The results of these analyses indicate that the top hits obtained from the virtual screening possess the ability to act as effective NEK2 inhibitors. Therefore, further investigation of the inhibitory potential of these identified compounds using in vitro and in vivo approaches is recommended.

5.
BMC Chem ; 17(1): 97, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37580804

ABSTRACT

Energetic heterocycles, including pyridines, triazoles, and tetrazoles, exhibit greater density, heats of formation, and oxygen balance compared to their carbocyclic counterparts, making them a promising approach for synthesizing novel bis-tetrazole acetamides. Synthesized compounds A-F, some of which feature a chlorine atom attached to the phenyl ring, serve as valuable synthons for aryl coupling reactions. Analysis via 1H-NMR and 13C-NMR spectroscopy, as well as density functional considerations through B3LYP functional correlation with 6-311 + + G(d) and 6-31G(d) basis set, revealed the observed LUMO/HOMO energies and charge transfer within the molecule. Additionally, the dipole moment, chemical hardness, softness, ionization potential, local reactivity potential via Fukui indices and thermodynamic properties (entropy, enthalpy, and Gibbs free energy) of the molecule were calculated through density functional theory studies. In addition, Molecular Docking studies were conducted to investigate the anti-cancer potential of synthesized heterocyclic compounds against caspase 3, NF-KAPPA-B and P53 protein. Molecular docking analysis demonstrated a potent interaction between 2,2'-(5,5'-(1,4-phenylene)bis(1H-tetrazole-5,1-diyl))bis-N-(2,4-dinitrophenyl) acetamides (6d) and TP53 and NF-KAPPA-B with binding energies of - 11.8 kJ/mol and - 10.9 kJ/mol for TP53 and NF-KAPPA-B, respectively. Similarly, 2,2'-(5,5'-(1,4-phenylene)bis(1H-tetrazole-5,1-diyl))bis-N-(2-chlorophenyl) acetamides (6f) exhibited a strong interaction with caspase-3 with binding energy of -10.0 kJ/mol, indicating their potential as therapeutic agents against these proteins. Furthermore, the findings of current study was further strengthen by 100 ns molecular dynamics (MD) simulations. Finally, theoretical studies of oxygen balance and nitrogen percentage suggest that these molecules can be utilized as energetic materials.

6.
BMC Chem ; 17(1): 95, 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37550776

ABSTRACT

A new compound, C23H20BrN3OS, containing a quinoline-based iminothiazoline with a thiazoline ring, was synthesized and its crystal and molecular structures were analyzed through single crystal X-ray analysis. The compound belongs to the triclinic system P - 1 space group, with dimensions of a = 9.2304 (6) Å, b = 11.1780 (8) Å, c = 11.3006 (6) Å, α = 107.146 (5)°, ß = 93.701 (5)°, γ = 110.435 (6)°, Z = 2 and V = 1025.61 (12) Å3. The crystal structure showed that C-H···N and C-H···O hydrogen bond linkages, forming infinite double chains along the b-axis direction, and enclosing R22(14) and R22(16) ring motifs. The Hirshfeld surface analysis revealed that H…H (44.1%) and H…C/C…H (15.3%) interactions made the most significant contribution. The newly synthesized (Z)-4-bromo-N-(4-butyl-3 (quinolin-3-yl)thiazol-2(3H)-ylidene)benzamide, in comparison to oleanolic acid, exhibited more strong potential against elastase with an inhibition value of 1.21 µM. Additionally, the derivative was evaluated using molecular docking and molecular dynamics simulation studies, which showed that the quinoline based iminothiazoline derivative has the potential to be a novel inhibitor of elastase enzyme. Both theoretical and experimental findings suggested that this compound could have a number of biological activities.

7.
Med Chem Res ; 32(6): 1077-1086, 2023.
Article in English | MEDLINE | ID: mdl-37305207

ABSTRACT

Naphthalene ring is present in a number of FDA-approved, commercially available medications, including naphyrone, terbinafine, propranolol, naproxen, duloxetine, lasofoxetine, and bedaquiline. By reacting newly obtained 1-naphthoyl isothiocyanate with properly modified anilines, a library of ten novel naphthalene-thiourea conjugates (5a-5j) were produced with good to exceptional yields and high purity. The newly synthesized compounds were observed for their potential to inhibit alkaline phosphatase (ALP) and scavenge free radicals. All of the investigated compounds displayed a more powerful inhibitory profile than the reference agent, KH2PO4 particularly compound 5h and 5a exhibited strong inhibitory potential against ALP with IC50 value of 0.365 ± 0.011 and 0.436 ± 0.057 µM respectively. In addition, Lineweaver-Burk plots revealed the non-competitive inhibition mode of the most powerful derivative i.e., 5h (ki value 0.5 µM). To investigate the putative binding mode of selective inhibitor interactions, molecular docking was performed. It is recommended that future research will focus on developing selective alkaline phosphatase inhibitors by modifying the structure of the 5h derivative.

8.
Molecules ; 28(6)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36985680

ABSTRACT

Bis-acyl-thiourea derivatives, namely N,N'-(((4-nitro-1,2-phenylene)bis(azanediyl)) bis(carbonothioyl))bis(2,4-dichlorobenzamide) (UP-1), N,N'-(((4-nitro-1,2-phenylene) bis(azanediyl))bis(carbonothioyl))diheptanamide (UP-2), and N,N'-(((4-nitro-1,2-phenylene)bis(azanediyl))bis(carbonothioyl))dibutannamide (UP-3), were synthesized in two steps. The structural characterization of the derivatives was carried out by FTIR, 1H-NMR, and 13C-NMR, and then their DNA binding, anti-urease, and anticancer activities were explored. Both theoretical and experimental results, as obtained by density functional theory, molecular docking, UV-visible spectroscopy, fluorescence (Flu-)spectroscopy, cyclic voltammetry (CV), and viscometry, pointed towards compounds' interactions with DNA. However, the values of binding constant (Kb), binding site size (n), and negative Gibbs free energy change (ΔG) (as evaluated by docking, UV-vis, Flu-, and CV) indicated that all the derivatives exhibited binding interactions with the DNA in the order UP-3 > UP-2 > UP-1. The experimental findings from spectral and electrochemical analysis complemented each other and supported the theoretical analysis. The lower diffusion coefficient (Do) values, as obtained from CV responses of each compound after DNA addition at various scan rates, further confirmed the formation of a bulky compound-DNA complex that caused slow diffusion. The mixed binding mode of interaction as seen in docking was further verified by changes in DNA viscosity with varying compound concentrations. All compounds showed strong anti-urease activity, whereas UP-1 was found to have comparatively better inhibitory efficiency, with an IC50 value of 1.55 ± 0.0288 µM. The dose-dependent cytotoxicity of the synthesized derivatives against glioblastoma MG-U87 cells (a human brain cancer cell line) followed by HEK-293 cells (a normal human embryonic kidney cell line) indicated that UP-1 and UP-3 have greater cytotoxicity against both cancerous and healthy cell lines at 400 µM. However, dose-dependent responses of UP-2 showed cytotoxicity against cancerous cells, while it showed no cytotoxicity on the healthy cell line at a low concentration range of 40-120 µM.


Subject(s)
Brain Neoplasms , Urease , Humans , Molecular Docking Simulation , HEK293 Cells , Anti-Bacterial Agents/pharmacology , DNA/chemistry , Thiourea/chemistry , Structure-Activity Relationship , Enzyme Inhibitors/pharmacology
9.
J Enzyme Inhib Med Chem ; 38(1): 2163394, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36629454

ABSTRACT

Deposition of hydroxyapatite (HA) or alkaline phosphate crystals on soft tissues causes the pathological calcification diseases comprising of end-stage osteoarthritis (OA), ankylosing spondylitis (AS), medial artery calcification and tumour calcification. The pathological calcification is symbolised by increased concentration of tissue non-specific alkaline phosphatase (TNAP). An efficient therapeutic strategy to eradicate these diseases is required, and for this the alkaline phosphatase inhibitors can play a potential role. In this context a series of novel quinolinyl iminothiazolines was synthesised and evaluated for alkaline phosphatase inhibition potential. All the compounds were subjected to DFT studies where N-benzamide quinolinyl iminothiazoline (6g), N-dichlorobenzamide quinolinyl iminothiazoline (6i) and N-nitrobenzamide quinolinyl iminothiazoline (6j) were found as the most reactive compounds. Then during the in-vitro testing, the compound N-benzamide quinolinyl iminothiazoline (6g) exhibited the maximum alkaline phosphatase inhibitory effect (IC50 = 0.337 ± 0.015 µM) as compared to other analogues and standard KH2PO4 (IC50 = 5.245 ± 0.477 µM). The results were supported by the molecular docking studies, molecular dynamics simulations and kinetic analysis which also revealed the inhibitory potential of compound N-benzamide quinolinyl iminothiazoline (6g) against alkaline phosphatase. This compound can be act as lead molecule for the synthesis of more effective inhibitors and can be suggested to test at the molecular level.


Subject(s)
Alkaline Phosphatase , Enzyme Inhibitors , Molecular Docking Simulation , Kinetics , Alkaline Phosphatase/metabolism , Enzyme Inhibitors/chemistry , Benzamides/pharmacology
10.
J Biomol Struct Dyn ; 41(3): 942-953, 2023 02.
Article in English | MEDLINE | ID: mdl-34927557

ABSTRACT

The compounds 2a-2h containing a thiazolidinone pharmacophore were synthesized via hetrerocylization of thiosemicarbazones with dimethyl acetylenedicarboxylate. The hybrid molecules were evaluated for anticancer activity against the human cell lines MCF-7, T47D (human breast adenocarcinoma) and HeLa (cervical cancer). Compounds 2c showed effective cytotoxicity on MCF-7 and HeLa (GI50 6.40 ± 0.10 µM/mL and GI5010.30 ± 1.09 µM/mL), and compound 2d also showed effective cytotoxicity against MCF-7 and HeLa cell lines i.e., (GI50 16.60 ± 0.21 µM/mL and GI50 15.02 ± 0.14 µM/mL). These findings were comparable to cisplatin (azane;dichloroplatinum) the standard drug (GI50 13.20 ± µM/mL and 15.10 µM/mL respectively) and consequently nominated for determination of the mode of cell death. The results revealed the cytotoxic effects of 2c and 2d by induction of apoptosis in MCF-7 and HeLa cell lines. Moreover the results were further supported by the Molecular Docking which predicts the binding interactions of the best anticancer ligands with Ribonucleotide reductase (RNR), which is essential enzyme required for de-novo synthesis of DNA precursors. Molecular dynamic simulations were also performed to determine the stability of protein-ligand complex under different simulated conditions. In addition, the computational studies including DFTs, ADMET properties suggested these compounds can act as lead molecules, for the synthesis of novel drug candidates for the treatment of specific cancer and its associated malignancies.


Subject(s)
Antineoplastic Agents , Humans , HeLa Cells , Structure-Activity Relationship , Molecular Docking Simulation , Drug Screening Assays, Antitumor , Antineoplastic Agents/chemistry , Drug Design , Cell Proliferation , Molecular Structure , Cell Line, Tumor
11.
Molecules ; 27(24)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36557863

ABSTRACT

A series of hydrazine-1-carbothioamides derivatives (3a-3j) were synthesized and analyzed for inhibitory potential towards bovine carbonic anhydrase II (b-CA II) and 15-lipoxygenase (15-LOX). Interestingly, four derivatives, 3b, 3d, 3g, and 3j, were found to be selective inhibitors of CA II, while other derivatives exhibited CA II and 15-LOX inhibition. In silico studies of the most potent inhibitors of both b-CA II and 15-LOX were carried out to find the possible binding mode of compounds in their active site. Furthermore, MD simulation results confirmed that these ligands are stably bound to the two targets, while the binding energy further confirmed the inhibitory effects of the 3h compound. As these compounds may have a role in particular diseases, the reported compounds are of great relevance for future applications in the field of medicinal chemistry.


Subject(s)
Carbonic Anhydrase II , Molecular Dynamics Simulation , Animals , Cattle , Carbonic Anhydrase II/chemistry , Lipoxygenase Inhibitors/pharmacology , Carbonic Anhydrase Inhibitors/chemistry , Molecular Docking Simulation , Structure-Activity Relationship , Molecular Structure , Carbonic Anhydrase IX/metabolism
12.
Biomolecules ; 12(11)2022 11 16.
Article in English | MEDLINE | ID: mdl-36421710

ABSTRACT

Carbonic anhydrases (CA), having Zn2+ metal atoms, are responsible for the catalysis of CO2 and water to bicarbonate and protons. Any abnormality in the functioning of these enzymes may lead to morbidities such as glaucoma and different types of cancers including brain, renal and pancreatic carcinomas. To cope with the lack of presence of a promising therapeutic agent against these cancers, searching for an efficient and suitable carbonic anhydrase inhibitor is crucial. In the current study, ten novel 3-ethylaniline hybrid imino-thiazolidinones were synthesized and characterized by FTIR, NMR (1H, 13C), and mass spectrometry. Synthesis was carried out by diethyl but-2-ynedioate cyclization and different acyl thiourea substitutions of 3-ethyl amine. The CA (II) enzyme inhibition profile for all synthesized derivatives was determined. It was observed that compound 6e demonstrated highest inhibition of CA-II with an IC50 value of 1.545 ± 0.016 µM. In order to explore the pharmacophoric properties and develop structure activity relationship, in silico screening was performed. In silico investigations included density functional theory (DFT) studies, pharmacophore-guided model development, molecular docking, molecular dynamic (MD) simulations, and prediction of drug likeness scores. DFT investigations provided insight into the electronic characteristics of compounds, while molecular docking determined the binding orientation of derivatives within the CA-II active site. Compounds 6a, 6e, and 6g had a reactive profile and generated stable protein-ligand interactions with respective docking scores of -6.12, -6.99, and -6.76 kcal/mol. MD simulations were used to evaluate the stability of the top-ranked complex. In addition, pharmacophore-guided modeling demonstrated that compound 6e produced the best pharmacophore model (HHAAARR) compared to standard brinzolamide. In vitro and in silico investigations anticipated that compound 6e would be an inhibitor of carbonic anhydrase II with high efficacy. Compound 6e may serve as a potential lead for future synthesis that can be investigated at the molecular level, and additional in vivo studies are strongly encouraged.


Subject(s)
Carbonic Anhydrase II , Neoplasms , Humans , Molecular Docking Simulation , Kinetics , Carbonic Anhydrase Inhibitors/pharmacology
13.
Int J Mol Sci ; 23(21)2022 Oct 29.
Article in English | MEDLINE | ID: mdl-36361953

ABSTRACT

The acetophenone-based 3,4-dihydropyrimidine-2(1H)-thione was synthesized by the reaction of 4-methylpent-3-en-2-one (1), 4-acetyl aniline (2) and potassium thiocyanate. The spectroscopic analysis including: FTIR, 1H-NMR, and single crystal analysis proved the structure of synthesized compound (4), with the six-membered nonplanar ring in envelope conformation. In crystal structure, the intermolecular N-H ⋯ S and C-H ⋯ O hydrogen bonds link the molecule in a two-dimensional manner which is parallel to (010) the plane enclosing R22 (8) and R22 (10) ring motifs. After that, the Hirshfeld surfaces and their related two-dimensional fingerprint plots were used for thorough investigation of intermolecular interactions. According to Hirshfeld surface analysis, the most substantial contributions to the crystal packing are from H ⋯ H (59.5%), H ⋯ S/S ⋯ H (16.1%), and H ⋯ C/C ⋯ H (13.1%) interactions. The electronic properties and stability of the compound were investigated through density functional theory (DFT) studies using B3LYP functional and 6-31G* as a basis set. The compound 4 displayed the high chemical reactivity with chemical softness of 2.48. In comparison to the already reported known tyrosinase inhibitor, the newly synthesized derivatives exhibited almost seven-fold better inhibition of tyrosinase (IC50 = 1.97 µM), which was further supported by molecular docking studies. The compound 4 inside the active pocket of ribonucleotide reductase (RNR) exhibited a binding energy of -19.68 kJ/mol, and with mammalian deoxy ribonucleic acid (DNA) it acts as an effective DNA groove binder with a binding energy of -21.32 kJ/mol. The results suggested further exploration of this compound at molecular level to synthesize more potential leads for the treatment of cancer.


Subject(s)
Monophenol Monooxygenase , Ribonucleotide Reductases , Thiones/pharmacology , Molecular Docking Simulation , Acetophenones/pharmacology , DNA
14.
Molecules ; 27(19)2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36235300

ABSTRACT

The current study focused on the laboratory approach in conjunction with computational methods for the synthesis and bioactivity assessment of unique 2-tetradecanoylimino-3-aryl-4-methyl-1,3-thiazolines (2a-2k). Processes included cyclizing 1-aroyl-3-arylthioureas with propan-2-one in the presence of trimethylamine and bromine. By using spectroscopic techniques and elemental analyses, structures were elucidated. To assess the electronic properties, density functional theory (DFT) calculations were made, while binding interactions of synthesized derivatives were studied by the molecular docking tool. Promising results were found during the evaluation of bioactivity of synthesized compounds against alkaline phosphatase. The drug likeliness score, an indicator used for any chemical entity posing as a drug, was within acceptable limits. The data suggested that most of the derivatives were potent inhibitors of alkaline phosphatase, which in turn may act as lead molecules to synthesize derivatives having desired pharmacological profiles for the treatment of specific diseases associated with abnormal levels of ALPs.


Subject(s)
Alkaline Phosphatase , Bromine , Alkaline Phosphatase/metabolism , Enzyme Inhibitors/chemistry , Molecular Docking Simulation , Structure-Activity Relationship
15.
Front Chem ; 10: 992701, 2022.
Article in English | MEDLINE | ID: mdl-36226116

ABSTRACT

The crystal structure of N-((4-acetylphenyl)carbamothioyl)pivalamide (3) was synthesized by inert refluxing pivaloyl isothiocyanate (2) and 4-aminoacetophenone in dry acetone. The spectroscopic characterization (1H-NMR, 13CNMR, FT-IR) and single crystal assays determined the structure of synthesized compound (3). Systematic experimental and theoretical studies were conducted to determine the molecular characteristics of the synthesized crystal. The biological examination of (3) was conducted against a variety of enzymes i.e., acetyl cholinesterase (AChE), butyl cholinesterase (BChE), alpha amylase, and urease enzyme were evaluated. The crystal exhibited approximately 85% enzyme inhibition activity against BChE and AChE, but only 73.8 % and 57.9% inhibition activity against urease and alpha amylase was observed respectively. The theoretical calculations were conducted using density functional theory studies (DFTs) with the 6-31G (d, p) basis set and B3LYP functional correlation. The Frontier molecular orbital analysis revealed that the HOMO/LUMO energy gap was smaller, which corresponds to the molecule's reactivity. In terms of reactivity, the chemical softness value was found to be in good agreement with experimental values. In Crystal structure analysis, the intramolecular N-H•••O hydrogen bond generates a S 6) ring motif and N-H•••O interactions exist in crystal structure between the centroids of neighboring parallel aromatic (C4-C9) rings with a centroid to centroid distance of 3.9766 (7)Å. These intermolecular interactions were useful in structural stabilization. The Hirshfeld surfaces and their related two-dimensional fingerprint plots were used for thorough investigation of intermolecular interactions. According to Hirshfeld surface analysis of the crystal structure the most substantial contributions to the crystal packing are from H ••• O and H ••• N/N ••• H interactions. Molecular docking studies were conducted to evaluate the binding orientation of synthesized crystal with multiple targets. The compound exhibited stronger interactions with AChE and BChE with binding energies of -7.5 and -7.6 kcal/mol, respectively. On the basis of in-vitro and in-silico findings, it is deduced that N-((4-acetylphenyl)carbamothioyl)pivalamide 3) possesses reactive and potent multiple target inhibitory properties.

16.
Int J Mol Sci ; 23(19)2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36232944

ABSTRACT

Urease is an amidohydrolase enzyme that is responsible for fatal morbidities in the human body, such as catheter encrustation, encephalopathy, peptic ulcers, hepatic coma, kidney stone formation, and many others. In recent years, scientists have devoted considerable efforts to the quest for efficient urease inhibitors. In the pharmaceutical chemistry, the thiourea skeleton plays a vital role. Thus, the present work focused on the development and discovery of novel urease inhibitors and reported the synthesis of a set of 1-aroyl-3-[3-chloro-2-methylphenyl] thiourea hybrids with aliphatic and aromatic side chains 4a-j. The compounds were characterized by different analytical techniques including FT-IR, 1H-NMR, and 13C-NMR, and were evaluated for in-vitro enzyme inhibitory activity against jack bean urease (JBU), where they were found to be potent anti-urease inhibitors and the inhibitory activity IC50 was found in the range of 0.0019 ± 0.0011 to 0.0532 ± 0.9951 µM as compared to the standard thiourea (IC50 = 4.7455 ± 0.0545 µM). Other studies included density functional theory (DFT), antioxidant radical scavenging assay, physicochemical properties (ADMET properties), molecular docking and molecular dynamics simulations. All compounds were found to be more active than the standard, with compound 4i exhibiting the greatest JBU enzyme inhibition (IC50 value of 0.0019 ± 0.0011 µM). The kinetics of enzyme inhibition revealed that compound 4i exhibited non-competitive inhibition with a Ki value of 0.0003 µM. The correlation between DFT experiments with a modest HOMO-LUMO energy gap and biological data was optimal. These recently identified urease enzyme inhibitors may serve as a starting point for future research and development.


Subject(s)
Antioxidants , Thiourea , Antioxidants/pharmacology , Canavalia/metabolism , Enzyme Inhibitors/chemistry , Molecular Docking Simulation , Spectroscopy, Fourier Transform Infrared , Structure-Activity Relationship , Thiourea/chemistry , Thiourea/pharmacology , Urease/metabolism
17.
Heliyon ; 8(8): e10098, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36046526

ABSTRACT

Various N- and S-containing 5-membered heterocycles such as imidazole-2-thiones, thiazolidinones and thiazolidin-2-imines are among the most eminent biologically active organic heterocycles and are present in many marketed drugs. In view of their synthetic and biological significance, an efficient synthesis of two novel thiazolidine-2-imines (4a-b) utilizing a three-component one-pot approach starting from an aldimine, an alkyne and isothiocyanates has been developed. The reaction proceeded via a 5-exo digonal (5-exo dig) cyclization of a propargyl thiourea, formed in situ in the presence of Zn(II)-catalyst. The structures of the resulting products are elucidated by spectroscopic methods and X-ray crystallography. A DFT study explored the structural, thermodynamic and molecular electrostatic potential parameters for the compounds. The newly synthesized compounds (4a & 4b) were evaluated for the inhibition of tyrosinase both in vitro and in silico. The in vitro results revealed that the synthesized thiazolidine-2-imines (4a-b) showed good inhibition activity towards mushroom tyrosinase (IC50 = 1.151 ± 1.25 and 2.079 ± 0.87 µM respectively) in comparison to the kojic acid standard (IC50 = 16.031 ± 1.27 µM) a commonly used anti-pigment agent in plant and animal tissues. The experimental inhibition was further assessed by molecular docking studies between synthesized ligands and the human tyrosinase protein complex to investigate the intermolecular interactions responsible for tyrosinase inhibition activity.

18.
RSC Adv ; 12(27): 17194-17207, 2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35755589

ABSTRACT

N-((4-Acetylphenyl)carbamothioyl)-2,4-dichlorobenzamide (4) was synthesized by the treatment of 2,4-dichlorobenzoyl chloride with potassium thiocyanate in a 1 : 1 molar ratio in dry acetone to afford the 2,4-dichlorobenzoyl isothiocyanate in situ which on reaction with acetyl aniline furnished (4) in good yield and high purity. The compound was confirmed by FTIR, 1H-NMR, and 13C-NMR and single crystal X-ray diffraction studies. The planar rings were situated at a dihedral angle of 33.32(6)°. The molecules, forming S(6) ring motifs with the intramolecular N-H⋯O hydrogen bonds, were linked through intermolecular C-H⋯O and N-H⋯S hydrogen bonds, enclosing R2 2(8) ring motifs, into infinite double chains along [101]. C-H⋯π and π⋯π interactions with an inter-centroid distance of 3.694 (1) Å helped to consolidate a three-dimensional architecture. Hirshfeld surface (HS) analysis further indicated that the most important contributions for the crystal packing were from H⋯C/C⋯H (20.9%), H⋯H (20.5%), H⋯Cl/Cl⋯H (19.4%), H⋯O/O⋯H (13.8%) and H⋯S/S⋯H (8.9%) interactions. Thus C-H⋯π (ring), π⋯π, van der Waals interactions and hydrogen bonding played the major roles in the crystal packing. The electronic structure and computed DFT (density functional theory) parameters identified the reactivity profile of compound (4). In silico binding of (4) with RNA indicated the formation of a stable protein-ligand complex via hydrogen bonding, while DNA docking studies inferred (4) as a potent groove binder. The experimentally observed hypochromic change (57.2%) in the UV-visible spectrum of (4) in the presence of varying DNA concentrations together with the evaluated binding parameters (K b; 7.9 × 104 M-1, ΔG; -28.42 kJ mol-1) indicated spontaneous interaction of (4) with DNA via groove binding and hence supported the findings obtained through docking analysis. This compound also showed excellent urease inhibition activity in both in silico and vitro studies with an IC50 value of 0.0389 ± 0.0017 µM. However, the radical scavenging efficiency of (4) was found to be modest in comparison to vitamin C.

19.
RSC Adv ; 12(27): 17596-17606, 2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35765454

ABSTRACT

Purinergic signaling is regulated by a group of extracellular enzymes called ectonucleotidases. One of its members i.e., ecto-5'-nucleotidase (h-e5'NT) is involved in the final step of the enzymatic hydrolysis cascade that is the conversion of adenosine monophosphate (AMP) to adenosine and therefore, involves the regulation of adenosine level in extracellular space. The overexpression of h-e5'NT has been observed in various pathological conditions such as hypoxia, inflammation and cancers, and led to various complications. Hence, the identification of a potent as well as selective inhibitor of h-e5'NT is of greater importance in therapeutic treatment of various diseases. Azomethine-thioxoimidazolidinone derivatives were studied for their inhibition potential against e5'NT enzyme along with cytotoxic potential against cancer cell lines possessing overexpression of e5'NT enzyme. The derivative (E)-3-((4-((3-methoxybenzyl)oxy)benzylidene)amino)-2-thioxoimidazolidin-4-one (4g) displayed selective and significant inhibition towards h-e5'NT with an IC50 value of 0.23 ± 0.08 µM. While two other derivatives i.e., (E)-3-(((5-bromothiophen-2-yl)methylene)amino)-2-thioxoimidazolidin-4-one (4b) and 2-thioxo-3-((3,4,5-trimethoxybenzylidene)amino)imidazolidin-4-one (4e), exhibited non-selective potent inhibitory behavior against both human and rat enzymes. Moreover, these derivatives (4b, 4e and 4g) were further investigated for their effect on the expression of h-e5'NT using quantitative real time polymerase chain reaction. Additionally, molecular docking and DFT studies were also performed to determine the putative binding mode of potent inhibitors within the enzyme active site. HOMO, LUMO, ΔE, and molecular electrostatic potential maps were computed by DFT and the charge transfer regions within the molecules were identified to find out the regions for electrophilic and nucleophilic attack.

20.
RSC Adv ; 12(19): 11974-11991, 2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35481107

ABSTRACT

Porcine Pancreatic Elastase (PPE) is a serine protease that is homologous to trypsin and chymotrypsin that are involved in various pathologies like inflammatory disease, Chronic Obstructive Pulmonary Disease (COPD), acute respiratory distress syndrome, cystic fibrosis, and atherosclerosis. PPE if remained uninhibited would lead to digestion of important connective tissue. We developed new structurally diverse series of adamantyl-iminothiazolidinone hybrids to divulge elastase inhibition assay. To identify potent derivatives, in silico screening was conducted and in vitro studies disclosed that the compounds 5a, 5f, 5g, and 5h showed excellent binding energies and low IC50 values. In silico studies including molecular docking, DFT studies (using the B3LYP/SVP basis set in the gas phase) drug likeness scores and molecular dynamic simulation studies were conducted to evaluate protein-ligand interactions and to determine the stability of top ranked conformation. In silico studies further supported the results of in vitro experiments and suggest these derivatives as novel inhibitors of elastase enzyme.

SELECTION OF CITATIONS
SEARCH DETAIL
...